

A Rewiew at Calculus

Having defined real numbers(may mention in the following notes), the first thing we will study is sequences. We will want to study what it means for a sequence to converge. Intuitively, we would like to say that $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots$ converges to 0, while $1, 2, 3, 4, \cdots$ diverges. However, the actual formal definition of convergence is rather hard to get right, and historically there have been failed attempts that produced spurious results.

Definition Sequence

A *sequence* is, formally, a function $a : \mathbb{N} \to \mathbb{R}$ (or \mathbb{C}). Usually (i.e. always), we write a_n instead of a(n). Instead of a, we usually write it as (a_n) , $(a_n)_1^{\infty}$ or $(a_n)_{n=1}^{\infty}$ to indicate it is a sequence.

Definition Limits of seuqence

Let (a_n) be a sequence and $\ell \in \mathbb{R}$. Then a_n converges to ℓ , tends to ℓ , or $a_n \to \ell$, if for all $\varepsilon > 0$, there is some $N \in \mathbb{N}$ such that whenever n > N, we have $|a_n - \ell| < \varepsilon$. In symbols, this says

$$(\forall \varepsilon > 0)(\exists N)(\forall n \ge N) |a_n - \ell| < \varepsilon.$$

We say ℓ is the *limit* of (a_n) .

Let's take a look at an example from Demidovich. Suppose $x_n = \frac{n}{n+1} (n \in \mathbb{N})$,

prove that $\lim_{x\to\infty} x_n = 1$

Proof: That is, proof that that for any given $\varepsilon>0$, find out the $N=N(\varepsilon)$ that when n>N,we have $|x_n-1|<\varepsilon$

Since
$$|x_n-1|=\frac{1}{n+1}$$
, we only need to let $\frac{1}{n+1}<\varepsilon$, i.e. $n>\frac{1}{\varepsilon}-1$. So let $N=N(\varepsilon)=\left\lceil\frac{1}{\varepsilon}\right\rceil$.

Definition Limit of function

Let $A \subseteq \mathbb{R}$ and let $f: A \to \mathbb{R}$. We say

$$\lim_{x \to a} f(x) = \ell,$$

or $f(x) \to \ell$ as $x \to a$, if

$$(\forall \varepsilon > 0)(\exists \delta > 0)(\forall x \in A) \ 0 < |x - a| < \delta \Rightarrow |f(x) - \ell| < \varepsilon. \tag{1}$$

We couldn't care less what happens when x=a, hence the strict inequality 0<|x-a|. In fact, f doesn't even have to be defined at x=a.

Definition Derivative of function

The *derivative* of a function f(x) with respect to x, interpreted as the rate of change of f(x) with x, is

$$\frac{df}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

A function f(x) is differentiable at x if the limit exists (i.e. the left-hand and right-hand limits are equal).

Definition O and o notations

 $(i) \ "f(x)=o(g(x)) \text{ as } x\to x_0 " \text{ if } \lim_{x\to x_0}\frac{f(x)}{g(x)}=0. \text{ Intuitively, } f(x) \text{ is much smaller than } g(x).$

(ii) "f(x)=O(g(x)) as $x\to x_0$ " if $\frac{f(x)}{g(x)}$ is bounded as $x\to x_0$. Intuitively, f(x) is about as big as g(x).

Note that for f(x) = O(g(x)) to be true, $\lim_{x \to x_0} \frac{f(x)}{g(x)}$ need not exist.

Usually, x_0 is either 0 or infinity. Clearly, we have f(x) = o(g(x)) implies f(x) = O(g(x)).

Theorem 1 (Chain rule)

Given f(x) = F(g(x)), then

$$\frac{df}{dx} = \frac{dF}{dq} \frac{dg}{dx}.$$

Theorem 2 (Product rule)

Give f(x) = u(x)v(x). Then

$$f'(x)=u'(x)v(x)+u(x)v'(x).$$

Theorem 3 (Quotient rule)

Give
$$f(x) = \frac{u(x)}{v(x)}$$
, then

$$f'(x) = \frac{u'v - uv'}{v^2}$$

Theorem 4 (Leibniz's rule)

Given f = uv, then

$$f^{(n)}(x) = \sum_{r=0}^{n} \binom{n}{r} u^{(r)} v^{(n-r)},$$

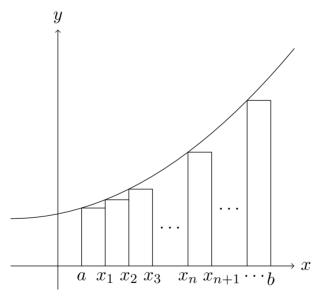
where $f^{(n)}$ is the n-th derivative of f.

Definition Integration

An integral is the limit of a sum, e.g.

$$\int_a^b f(x) \ dx = \lim_{\Delta x \to 0} \sum_{n=0}^N f(x_n) \Delta x.$$

For example, we can take $\Delta x=\frac{b-a}{N}$ and $x_n=a+n\Delta x$. Note that an integral need not be defined with this particular Δx and x_n . The term ""integral" simply refers to any limit of a sum (The usual integrals we use are a special kind known as Riemann integral, which we will study formally in analysis). Pictorially, we have



The area under the graph from x_n to x_{n+1} is $f(x_n)\Delta x + O(\Delta x^2)$. Provided that f is differentiable, the total area under the graph from a to b is

$$\lim_{N\to\infty}\sum_{n=0}^{N-1}\left(f(x_n)\Delta x\right)+N\cdot O(\Delta x^2)=\lim_{N\to\infty}\sum_{n=0}^{N-1}\left(f(x_n)\Delta x\right)+O(\Delta x)=\int_a^b\!f(x)\ dx$$

Theorem 5 (Fundamental Theorem of Calculus)

Let
$$F(x) = \int_a^x f(t) dt$$
. Then $F'(x) = f(x)$

Proof:

$$\begin{split} \frac{d}{dx}F(x) &= \lim_{h \to 0} \frac{1}{h} \bigg[\int_a^{x+h} f(t) \ dt - \int_a^x f(t) \ dt \bigg] \\ &= \lim_{h \to 0} \frac{1}{h} \int_x^{x+h} f(t) \ dt \\ &= \lim_{h \to 0} \frac{1}{h} [f(x)h + O(h^2)] \\ &= f(x) \end{split}$$

OK. That's all for today.