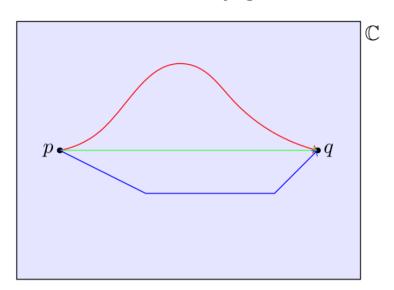


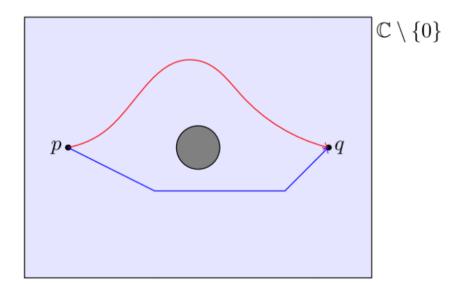
§7.7 Homotopy and simply connected spaces

Prototypical example for this section: \mathbb{C} and $\mathbb{C} \setminus \{0\}$.

Now let's motivate the idea of homotopy. Consider the example of the complex plane \mathbb{C} (which you can think of just as \mathbb{R}^2) with two points p and q. There's a whole bunch of paths from p to q but somehow they're not very different from one another. If I told you "walk from p to q" you wouldn't have too many questions.



So we're living happily in \mathbb{C} until a meteor strikes the origin, blowing it out of existence. Then suddenly to get from p to q, people might tell you two different things: "go left around the meteor" or "go right around the meteor".



So what's happening? In the first picture, the red, green, and blue paths somehow all looked the same: if you imagine them as pieces of elastic string pinned down at p and q, you can stretch each one to any other one.

But in the second picture, you can't move the red string to match with the blue string: there's a meteor in the way. The paths are actually different.³

The formal notion we'll use to capture this is *homotopy equivalence*. We want to write a definition such that in the first picture, the three paths are all *homotopic*, but the two paths in the second picture are somehow not homotopic. And the idea is just continuous deformation.

Definition 7.7.1. Let α and β be paths in X whose endpoints coincide. A (path) **homotopy** from α to β is a continuous function $F:[0,1]^2 \to X$, which we'll write $F_s(t)$ for $s,t \in [0,1]$, such that

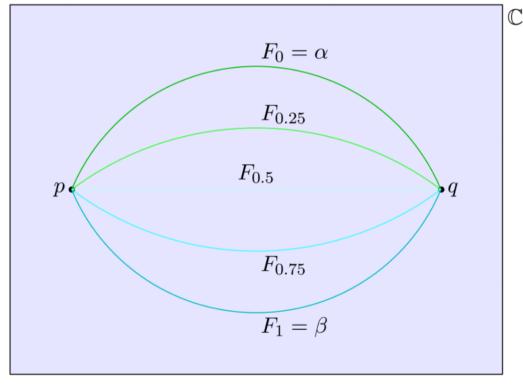
$$F_0(t) = \alpha(t)$$
 and $F_1(t) = \beta(t)$ for all $t \in [0, 1]$

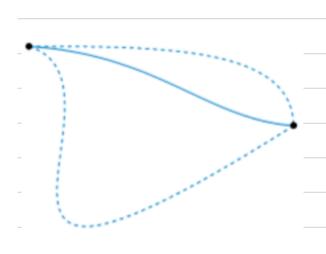
and moreover

$$\alpha(0) = \beta(0) = F_s(0)$$
 and $\alpha(1) = \beta(1) = F_s(1)$ for all $s \in [0, 1]$.

If a path homotopy exists, we say α and β are path homotopic and write $\alpha \simeq \beta$.

What this definition is doing is taking α and "continuously deforming" it to β , while keeping the endpoints fixed. Note that for each particular s, F_s is itself a function. So s represents time as we deform α to β : it goes from 0 to 1, starting at α and ending at β .





So now I can tell you what makes \mathbb{C} special:

Definition 7.7.4. A space X is **simply connected** if it's path-connected and for any points p and q, all paths from p to q are homotopic.

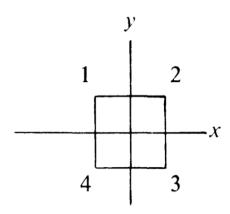
That's why you don't ask questions when walking from p to q in \mathbb{C} : there's really only one way to walk. Hence the term "simply" connected.

阳性第四天,难免了一早上,到下午4:00才舒服一点,可以看点别的了。

Definition 1.1. A semigroup is a nonempty set G together with a binary operation on G which is

(i) associative: a(bc) = (ab)c for all $a, b, c \in G$;

a monoid is a semigroup G which contains a
(ii) (two-sided) identity element $e \in G$ such that $ae = ea = a$ for all $a \in G$.
A group is a monoid G such that
(iii) for every $a \in G$ there exists a (two-sided) inverse element $a^{-1} \in G$ such that $a^{-1}a = aa^{-1} = e$.
A semigroup G is said to be abelian or commutative if its binary operation is
(iv) commutative: $ab = ba$ for all $a,b \in G$.
Our principal interest is in groups. However, semigroups and monoids are convenient for stating certain theorems in the greatest generality. Examples are given below. The order of a group G is the cardinal number $ G $. G is said to be finite [resp. infinite] if $ G $ is finite [resp. infinite].
时隔两年来看 Hungerford,怀旧。
Proposition 1.3. Let G be a semigroup. Then G is a group if and only if the following conditions hold:
 (i) there exists an element e ε G such that ea = a for all a ε G (left identity element); (ii) for each a ε G, there exists an element a⁻¹ ε G such that a⁻¹a = e (left inverse).
Proof: (3) Trivial. (4) We have a left identity element. Now we need to show it's two-sided.
$(a \cdot a^{-1})(a \cdot a^{-1}) = a \cdot (a^{-1}a)a^{-1} = aea^{-1} = aa^{-1}$: $aa^{-1} = e$.: a^{-1} is also the right inverse.
$a = a - (a^{-1}a) = (a - \alpha^{-1})a = ea = a$. e is two-sided: G is a group \square
Proposition 1.4. Let G be a semigroup. Then G is a group if and only if for all a, b ϵ G the equations $ax = b$ and $ya = b$ have solutions in G.
Proof: (=>) Trivial. (=) a-1-ax = a-1b = x = a-1b , a-a-1b = b
$a - a^{-1} = e : a^{-1}$ is two-sided inverse.
$a \cdot e = a \cdot (a^{-1}a) = (a \cdot \alpha^{-1})a = ea = a$. e is two-sided G is a group. \square
EXAMPLES. The integers Z , the rational numbers Q , and the real numbers R
are each infinite abelian groups under ordinary addition. Each is a monoid under
ordinary multiplication, but not a group (0 has no inverse). However, the nonzero
elements of Q and R respectively form infinite abelian groups under multiplication. The even integers under multiplication form a semigroup that is not a monoid.
EXAMPLE. Consider the square with vertices consecutively numbered 1,2,3,4,
center at the origin of the x - y plane, and sides parallel to the axes.



Let D_4^* be the following set of "transformations" of the square. $D_4^* = \{R, R^2, R^3, I, T_x, T_y, T_{1,3}, T_{2,4}\}$, where R is a counterclockwise rotation about the center of 90°, R^2 a counterclockwise rotation of 180°, R^3 a counterclockwise rotation of 270°

EXAMPLE. Let S be a nonempty set and A(S) the set of all bijections $S \to S$. Under the operation of composition of functions, $f \circ g$, A(S) is a group, since composition is associative, composition of bijections is a bijection, 1_S is a bijection, and every bijection has an inverse (see (13) of Introduction, Section 3). The elements of A(S) are called **permutations** and A(S) is called the group of permutations on the set S. If $S = \{1,2,3,\ldots,n\}$, then A(S) is called the **symmetric group on n letters** and denoted S_n . Verify that $|S_n| = n!$ (Exercise 5). The groups S_n play an important role in the theory of finite groups.

Since an element σ of S_n is a function on the finite set $S = \{1, 2, \ldots, n\}$, it can be described by listing the elements of S on a line and the image of each element under σ directly below it: $\begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ i_1 & i_2 & i_3 & & i_n \end{pmatrix}$. The product $\sigma \tau$ of two elements of S_n is the composition function τ followed by σ ; that is, the function on S given by $k \mapsto \sigma(\tau(k))$. For instance, let $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{pmatrix}$ and $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix}$ be elements of S_4 . Then under $\sigma \tau$, $1 \mapsto \sigma(\tau(1)) = \sigma(4) = 4$, etc.; thus $\sigma \tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 1 & 2 \end{pmatrix}$; similarly, $\tau \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix}$. This example also shows that S_n need not be abelian.

Theorem 1.5. Let $R(\sim)$ be an equivalence relation on a monoid G such that $a_1 \sim a_2$ and $b_1 \sim b_2$ imply $a_1b_1 \sim a_2b_2$ for all $a_i,b_i \in G$. Then the set G/R of all equivalence classes of G under R is a monoid under the binary operation defined by $(\bar{a})(\bar{b}) = \bar{a}b$, where \bar{x} denotes the equivalence class of $x \in G$. If G is an [abelian] group, then so is G/R.

An equivalence relation on a monoid G that satisfies the hypothesis of the theorem is called a **congruence relation** on G.

