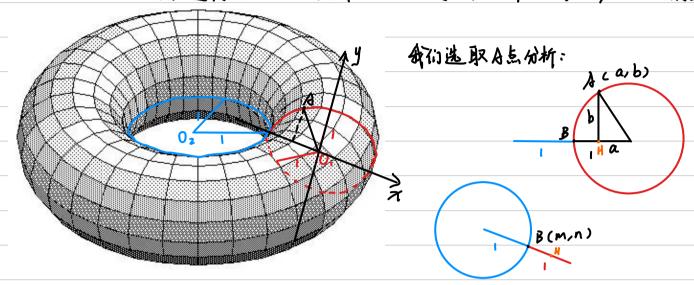


Algebraic Topology & Algebra

下面写下51×51=下的一个理解:

可以把丌视为一个坚过来的5,能一个水平的5,转-同,其边界的轨迹形成的点集。



以可构造映射:f:S'xS'→T, cx,y>ES'xB', x=(m,n), y=(a,b) LX, y) -> (m(2+a), n(2+a), b)

里然于是一个同胚映射。 ·· S'xs'=T

§57.4 Disjoint union and wedge sum

Prototypical example for this section: $S^1 \vee S^1$ is the figure eight.

The disjoint union of two spaces is geometrically exactly what it sounds like: you just imagine the two spaces side by side. For completeness, here is the formal definition.

Definition 57.4.1. Let X and Y be two topological spaces. The disjoint union, denoted $X \coprod Y$, is defined by

- The points are the disjoint union $X \coprod Y$, and
- A subset $U \subseteq X \coprod Y$ is open if and only if $U \cap X$ and $U \cap Y$ are open.

Exercise 57.4.2. Show that the disjoint union of two nonempty spaces is disconnected.

Proof = Suppose Tx = {Ø, Ux, Vx, ---, X}, Tr = {Ø, Ur, Ur, ---, Y} It's easy to show all Ux; and Ux; s joint (finity) is open in XLIY, so do X. Y We want to show XUY & Txuy, XUUri & Txux, YUUxi & Txuy The above is incorrect. Now rewrite. (Mbl Hem KHOY Uxi C UTI UC ONEH B XLIY) Шуо шихуа я реали нет кной ной то прува сет ис опен, Я кной оно ис обвисус тхат Хих ape ohen B X LI Y Sam BX 3m Hug 2 go mo may ero. Ulum. 我就是wadwi,竟然充了条件。就一句话:

- XUY is open , - (XUY) \(\Omega X \), (XUY) \(\Omega Y \) are both open

: X. Y are both clopen, which impilies the disconnection.

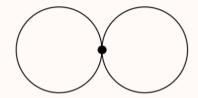
More interesting is the wedge sum, where two topological spaces X and Y are fused together only at a single base point.

Definition 57.4.3. Let X and Y be topological spaces, and $x_0 \in X$ and $y_0 \in Y$ be points. We define the equivalence relation \sim by declaring $x_0 \sim y_0$ only. Then the **wedge sum** of two spaces is defined as

$$X \vee Y = (X \coprod Y)/\sim.$$

Example 57.4.4 $(S^1 \vee S^1 \text{ is a figure eight})$

Let $X = S^1$ and $Y = S^1$, and let $x_0 \in X$ and $y_0 \in Y$ be any points. Then $X \vee Y$ is a "figure eight": it is two circles fused together at one point.



Abuse of Notation 57.4.5. We often don't mention x_0 and y_0 when they are understood (or irrelevant). For example, from now on we will just write $S^1 \vee S^1$ for a figure eight.

Remark 57.4.6 — Annoyingly, in LATEX \wedge gives \land instead of \lor (which is \vee). So this really should be called the "vee product", but too late.

确实。之前該 Boolean algebra 时就是这样高键的。

§57.5 CW complexes

Using this construction, we can start building some spaces. One common way to do so is using a so-called **CW complex**. Intuitively, a CW complex is built as follows:

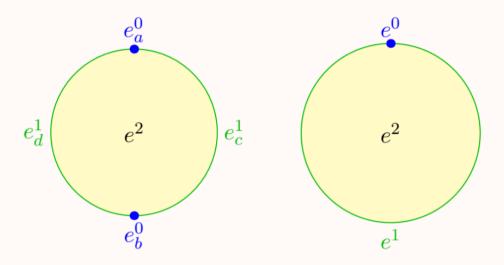
- Start with a set of points X^0 .
- Define X^1 by taking some line segments (copies of D^1) and fusing the endpoints (copies of S^0) onto X^0 .
- Define X^2 by taking copies of D^2 (a disk) and welding its boundary (a copy of S^1) onto X^1 .
- Repeat inductively up until a finite stage n; we say X is n-dimensional.

The resulting space X is the CW-complex. The set X^k is called the k-skeleton of X. Each D^k is called a k-cell; it is customary to denote it by e^k_α where α is some index. We say that X is **finite** if only finitely many cells were used.

Abuse of Notation 57.5.1. Technically, most sources (like [Ha02]) allow one to construct infinite-dimensional CW complexes. We will not encounter any such spaces in the Napkin.

Example 57.5.2 (D^2 with 2 + 2 + 1 and 1 + 1 + 1 cells)

- (a) First, we start with X^0 having two points e_a^0 and e_b^0 . Then, we join them with two 1-cells D^1 (green), call them e_c^1 and e_d^1 . The endpoints of each 1-cell (the copy of S^0) get identified with distinct points of X^0 ; hence $X^1 \cong S^1$. Finally, we take a single 2-cell e^2 (yellow) and weld it in, with its boundary fitting into the copy of S^1 that we just drew. This gives the figure on the left.
- (b) In fact, one can do this using just 1 + 1 + 1 = 3 cells. Start with X^0 having a single point e^0 . Then, use a single 1-cell e^1 , fusing its two endpoints into the single point of X^0 . Then, one can fit in a copy of S^1 as before, giving D^2 as on the right.



Example 57.5.3 (S^n as a CW complex)

- (a) One can obtain S^n (for $n \ge 1$) with just two cells. Namely, take a single point e^0 for X^0 , and to obtain S^n take D^n and weld its entire boundary into e^0 . We already saw this example in the beginning with n = 2, when we saw that the sphere S^2 was the result when we fuse the boundary of a disk D^2 together.
- (b) Alternatively, one can do a "hemisphere" construction, by constructing S^n inductively using two cells in each dimension. So S^0 consists of two points, then S^1 is obtained by joining these two points by two segments (1-cells), and S^2 is obtained by gluing two hemispheres (each a 2-cell) with S^1 as its equator.

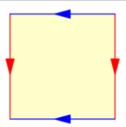
Definition 57.5.4. Formally, for each k-cell e_{α}^{k} we want to add to X^{k} , we take its boundary S_{α}^{k-1} and weld it onto X^{k-1} via an **attaching map** $S_{\alpha}^{k-1} \to X^{k-1}$. Then

$$X^k = X^{k-1} \coprod \left(\coprod_{\alpha} e_{\alpha}^k\right) / \sim$$

where \sim identifies each boundary point of e_{α}^{k} with its image in X^{k-1} .

§57.6.i The torus

The **torus** can be formed by taking a square and identifying the opposite edges in the same direction: if you walk off the right edge, you re-appear at the corresponding point in on the left edge. (Think *Asteroids* from Atari!)



Thus the torus is $(\mathbb{R}/\mathbb{Z})^2 \cong S^1 \times S^1$.

Note that all four corners get identified together to a single point. One can realize the torus in 3-space by treating the square as a sheet of paper, taping together the left and right (red) edges to form a cylinder, then bending the cylinder and fusing the top and bottom (blue) edges to form the torus.

注意,这个IR/工是加法运算下构造的陪集,和卫/SZ类似。我们回头看一眼Hungerford:

Definition 4.1. Let H be a subgroup of a group G and a,b ε G. a is right congruent to b modulo H, denoted $a \equiv_r b \pmod{H}$ if $ab^{-1} \varepsilon$ H. a is left congruent to b modulo H, denoted $a \equiv_1 b \pmod{H}$, if $a^{-1}b \varepsilon$ H.

Theorem 4.2. Let H be a subgroup of a group G.

- (i) Right [resp. left] congruence modulo H is an equivalence relation on G.
- (ii) The equivalence class of a ε G under right [resp. left] congruence modulo H is the set Ha = $\{ha \mid h \varepsilon H\}$ [resp. aH = $\{ah \mid h \varepsilon H\}$].
 - (iii) |Ha| = |H| = |aH| for all $a \in G$.

The set Ha is called a **right coset** of H in G and aH is called a **left coset** of H in G. In general it is *not* the case that a right coset is also a left coset (Exercise 2).

Proof: We write a=b for a=rb(modH)

ii) reflexive, aa-1= e ∈H ⇒ a=a

symmetric: =a=b : $ab^{-1}EH$: $(ab^{-1})^{-1}=ba^{-1}EH$: b=a

transitive : 12 = b, b= C : ab-1 EH, bc-1 EH : ab-1 bc-1 = ac-1 EH : a= C

(ii) = {x|x=a} = {x|xa-1eH} = {x|xa-1eH} = {x|xa-1eH} = {x|x=haeH} = {ha|heH}

(iii) f: Ha > H, ha -> h is a bijection

Corollary 4.3. Let H be a subgroup of a group G.

- (i) G is the union of the right [resp. left] cosets of H in G.
- (ii) Two right [resp. left] cosets of H in G are either disjoint or equal.
- (iii) For all $a,b \in G$, $Ha = Hb \Leftrightarrow ab^{-1} \in H$ and $aH = bH \Leftrightarrow a^{-1}b \in H$.
- (iv) If \Re is the set of distinct right cosets of H in G and \mathcal{L} is the set of distinct left cosets of H in G, then $|\Re| = |\mathcal{L}|$.

口

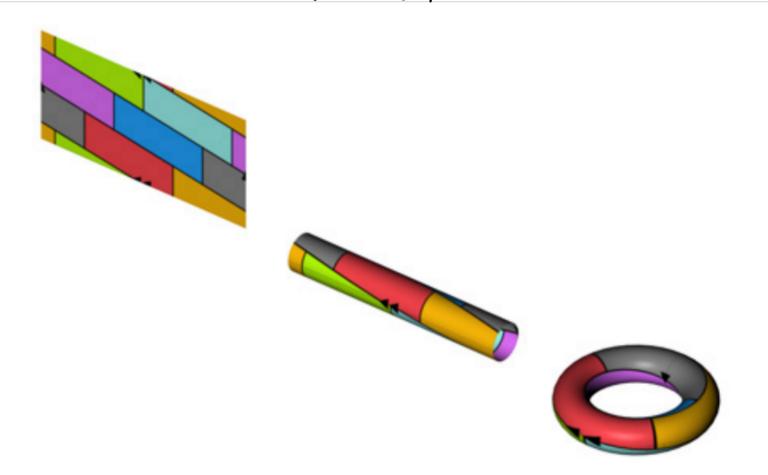
Proof: (i) ~Llii) 是 equ. Idation 的性质

ADDITIVE NOTATION. If H is a subgroup of an additive group, then right congruence modulo H is defined by: $a \equiv_r b \pmod{H} \Leftrightarrow a - b \in H$. The equivalence class of $a \in G$ is the right coset $H + a = \{h + a \mid h \in H\}$; similarly for left congruence and left cosets.

Definition 4.4. Let H be a subgroup of a group G. The index of H in G, denoted [G:H], is the cardinal number of the set of distinct right [resp. left] cosets of H in G.

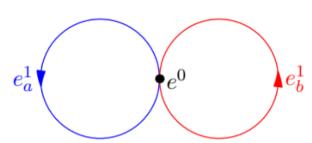
In view of Corollary 4.3 (iv), [G:H] does not depend on whether right or left cosets are used in the definition. Our principal interest is in the case when [G:H] is finite, which can occur even when G and H are infinite groups (for example, $[Z:\langle m\rangle]=m$ by Introduction, Theorem 6.8(i)). Note that if $H=\langle e\rangle$, then $Ha=\{a\}$ for every $a \in G$ and [G:H]=|G|.

始然们暂且回到 Alg. Top. 在此意义下,IR/Z很显然可被视为 E0,1),这样对3名-个5'x5'=11的理解: $5'x5'=[0,1)xE0,1)=(IR/Z)^2 二 T。如,回到 Napkin:$

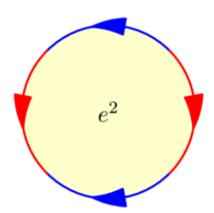


The torus can be realized as a CW complex with

- A 0-skeleton consisting of a single point,
- A 1-skeleton consisting of two 1-cells e_a^1 , e_b^1 , and



• A 2-skeleton with a single 2-cell e^2 , whose circumference is divided into four parts, and welded onto the 1-skeleton "via $aba^{-1}b^{-1}$ ". This means: wrap a quarter of the circumference around e_a^1 , then another quarter around e_b^1 , then the third quarter around e_a^1 but in the opposite direction, and the fourth quarter around e_b^1 again in the opposite direction as before.

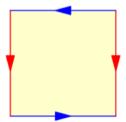


We say that $aba^{-1}b^{-1}$ is the **attaching word**; this shorthand will be convenient later on.

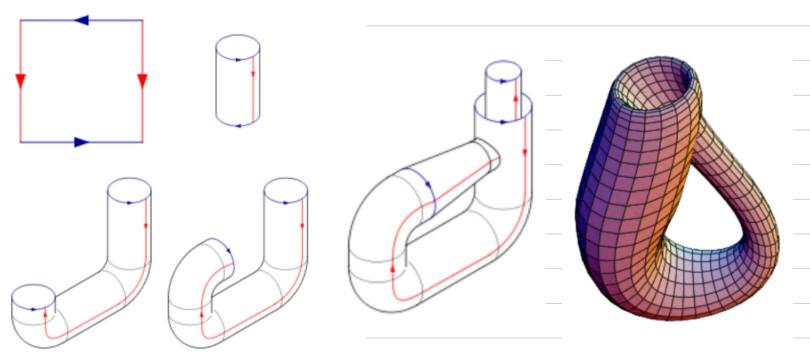
我能理解图,但我还是不明白 attaching word,估计是释论基础缺失。Klein bottle 也是:

§57.6.ii The Klein bottle

The **Klein bottle** is defined similarly to the torus, except one pair of edges is identified in the opposite manner, as shown.



Unlike the torus one cannot realize this in 3-space without self-intersecting. One can tape together the red edges as before to get a cylinder, but to then fuse the resulting blue circles in opposite directions is not possible in 3D. Nevertheless, we often draw a picture in 3-dimensional space in which we tacitly allow the cylinder to intersect itself.



• One 0-cell			
• Two 1-cell	Is e_a^1 and e_b^1 , and		
• A single 2	-cell attached this time via the	word $abab^{-1}$.	
3外我看这个	图南铁看3年小时,我感觉我已经多不	成代拓飞:	
		a	
		b a b	
		$\frac{c}{b}$	
		c $\downarrow a$	
		d b	
	C	e d c d c	
	b	$f \left(\begin{array}{c} \\ \\ \end{array} \right) b$	
		e fa	
		$f \stackrel{\smile}{\smile} a b$	