

Category Theory (Continued)

Example 60.2.8 (Posets are categories)

Let \mathcal{P} be a partially ordered set. We can construct a category P for it as follows:

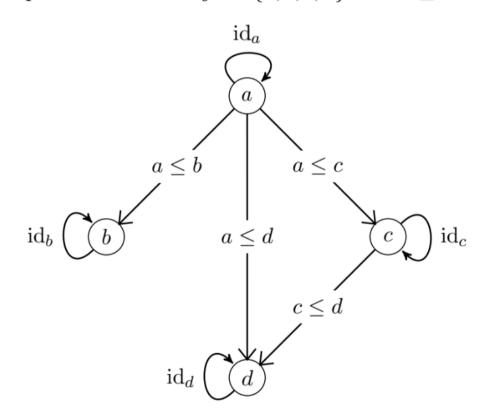
- The objects of P are going to be the elements of P.
- The arrows of P are defined as follows:
 - For every object $p \in P$, we add an identity arrow id_p , and
 - For any pair of distinct objects $p \leq q$, we add a single arrow $p \to q$.

There are no other arrows.

• There's only one way to do the composition. What is it?

这其只是一个并不陌生的例子,这前在Geek学院时听的Cat.就有。《也可作为arnow

For example, for the poset \mathcal{P} on four objects $\{a, b, c, d\}$ with $a \leq b$ and $a \leq c \leq d$, we get:



This illustrates the point that

The arrows of a category can be totally different from functions.

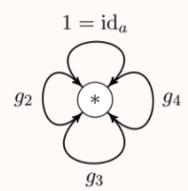
Definition 60.2.5. An arrow $A_1 \xrightarrow{f} A_2$ is an **isomorphism** if there exists $A_2 \xrightarrow{g} A_1$ such that $f \circ g = \mathrm{id}_{A_2}$ and $g \circ f = \mathrm{id}_{A_1}$. In that case we say A_1 and A_2 are **isomorphic**, hence $A_1 \cong A_2$.

Question 60.2.9. Check that no two distinct objects of a poset are isomorphic.

Obviously.

Example 60.2.10 (Important: groups are one-Object categories)

A group G can be interpreted as a category G with one object *, all of whose arrows are isomorphisms.



As [Le14] says:

The first time you meet the idea that a group is a kind of category, it's tempting to dismiss it as a coincidence or a trick. It's not: there's real content. To see this, suppose your education had been shuffled and you took a course on category theory before ever learning what a group was. Someone comes to you and says:

"There are these structures called 'groups', and the idea is this: a group is what you get when you collect together all the symmetries of a given thing."

"What do you mean by a 'symmetry'?" you ask.

"Well, a symmetry of an object X is a way of transforming X or mapping X into itself, in an invertible way."

"Oh," you reply, "that's a special case of an idea I've met before. A category is the structure formed by *lots* of objects and mappings between them – not necessarily invertible. A group's just the very special case where you've only got one object, and all the maps happen to be invertible."

Шит, лянхуй шищи фаньбиляоцян. ханьбуляо MSE.

Уелл. хуалэ 20 мин изай шапцен MSE, ю и гә ши ихиели шул дэ:

Yes, you can. Define a category M with just one formal object say $ob(M) = \{X\}$. Let G be a group. Define Mor(X,X) = underlying set of G, and composition of morphisms in Mor(X,X) by the binary operation on G. The identity morphism on X is just the identity element in G. Then you can verify that all axioms of a category are satisfied by M. Since each element in G has an inverse, note, moreover, that every element in Mor(X,X) is an isomorphism. In

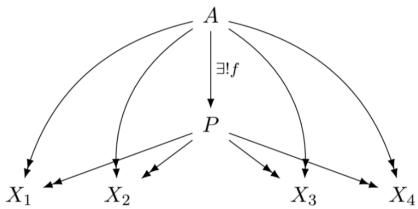
这其实有点物象,不过也恰恰诚明了arrow可以是很怪的东西。你没义的Mor并不没符合查觉上 Mor的含义, 包不一定对 obj 执行了什么操作或是某种 relation.

下面跳回 product.

Of course, we can define products of more than just one object. Consider a set of objects $(X_i)_{i\in I}$ in a category \mathcal{A} . We define a **cone** on the X_i to be an object A with some "projection" maps to each X_i . Then the **product** is a cone P which is "universal" in the same sense as before: given any other cone A there is a unique map $A \to P$ making the diagram commute. In short, a product is a "universal cone".

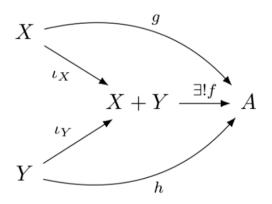
The picture of this is

cone 似乎真翻译成锥



See also Problem 60C.

One can also do the dual construction to get a **coproduct**: given X and Y, it's the object X+Y together with maps $X \xrightarrow{\iota_X} X+Y$ and $Y \xrightarrow{\iota_Y} X+Y$ (that's Greek iota, think inclusion) such that for any object A and maps $X \xrightarrow{g} A$, $Y \xrightarrow{h} A$ there is a unique f for which



Exercise 60.4.7. Describe the coproduct in Set.

Predictable terminology: a coproduct is a universal cocone.

Spoiler alert later on: this construction can be generalized vastly to so-called "limits", and we'll do so later on.

集后的条积是无交并。但这个无交并不是我曾经理解的那种(Ha s yyu og wu u ywu goy suyyybe yyyu

Ha ween wu lyas gans.)

这里无灰并指 给 A. B 中每个元素配上一个"标识元素" 使其原本的重复元素被视 为不同的。 由此可知,-定有 X→X+Y的一个 map lx ,而于的存在性也是显然的。 g 确定 因而于唯一。 直观束泥,如果记X→X+Y,π → α7,*),那么 f: α,*) → g υπ, 即忽略"标识"。 Y 同理。 下面被上无交并的定义防止意了

